2012 춘계학술대회 논문집
Annual Spring Conference 2012

■ 일시: 2012년 5월 3일(목) ~ 4일(금)
■ 장소: 국민연금 청풍리조트(충북 제천)
■ 후원: 한국과학기술단체총연합회
상태모델과 학습을 이용한 단기 풍속예측 알고리즘 구조
(An algorithmic structure using state model and learning for short-term wind speed prediction)

최병욱·송화성
(Byoung-Wook Choi · Hwa-Chang Song)
Seoul National Univ. of Science and Technology

Abstract

In a wind generation system, the short-term wind prediction is crucial to extract the maximum wind power. This paper suggests an algorithmic structure using the intelligent optimization method for the short-term wind prediction by using a state-model of the wind speed and a learning of historical wind data which are based on a statistical model. This model will be applied to real wind speed data to verify the correctness of wind speed prediction.

1. 서론

현재 사회에 있어서 화석 연료를 이용한 발전 시스템에 의한 CO₂ 방출 증대에 따른 심각한 기후 변화와 전통적 차원의 고갈에 따라 신재생에너지의 필요성이 대두되고 있다. 특히 신재생에너지에서 가장 경제성이 있는 풍력발전은 최근 많은 관심을 끌고 있으며, 특히 유럽을 중심의 많은 연구가 진행되며 하나의 예로서 스페인의 경우는 전력 소비의 4%를 풍력 시스템이 담당하고 있다[1-2]. 이러한 풍력발전은 수심대의 풍속발전기와 풍속 및 풍향을 측정하기 위한 기상자료로 구성된다. 기상자료에서 측정되는 풍속은 발전 용량과 밀접한 관계를 갖으며, 30, 60, 시간 범위에서 지속적으로 변하게 된다. 따라서 개발 풍력발전기의 제어를 위하여 단기간(short-term)의 풍속 예측이 요구된다[3-4].

풍력발전은 기본적으로 풍속에 의존하며, 풍속은 장애물과 지역 및 발전기 높이의 영향에 따라 매우 불확실한 특성을 갖는다. 또한 풍속에 따른 발전의 변화는 풍력발전 자체의 신뢰성을 떨어뜨리고, 안정적 전력 공급에 차질을 가져와 전력계통에 영향을 주게 된다. 따라서 이와 같은 문제에 따라 풍속을 예측하기 위한 노력이 많이 진행되어 왔다. 전통적으로 풍속예측 모델인 ARMA(Autoregressive Moving Average model)로부터 시작하여 럭지, 신경회로망 및 SVM(Support Vector Machine) 등 최적화 기법을 이용하여 예측의 정확도와 신뢰도를 높이기 위하여 많은 연구가 진행되고 있다[5-6].

본 연구는 풍력의 이력 데이터를 이용한 학습과 기상정보를 이용한 확률론적 예측 기법을 이용하여 풍속에 대한 상태 모델을 개발하고 이 상태 모델의 학습을 통하여 지능화 기법을 이용한 풍속 예측 알고리즘의 구조를 제안한다. 본 연구에 제시된 알고리즘을 이용하여 실제 풍력 데이터를 통하여 실용성 및 예측의 정확성에 대한 연구를 진행한다.

2. 풍속 예측 알고리즘

풍력발전 시스템을 대상으로 전력망의 최적 연계를 고려하기 위하여는 일베드리트의 풍속예측 알고리즘이 필요하다. 그리고 1과 같이 풍속 예측을 위해서는 승수적인 온라인 데이터와 기상예보를 통하여 통계학적 풍속예측 모델이 필요하다. 또한 지역의 특성과 학습을 통한 강화학적 풍속예측을 위해서는 파거 데이터가 또한 필요하다. 이와 같은 풍속예측은 결국 MPPT(Maximum Power Point Technology)와 같이 최적의 발전을 위하여 필요가 나간된 요소이다. 풍속 10%의 편차는 풍력발전의 30%의 영향을 가져올 수 있으며, 이에 따른 전력계통의 영향은 신뢰성 높은 전력망을 운영하여야 하는 저화학적 계통 구조에서는 매우 중요하다.

그림 1. 미래형 풍속 예측 기반 발전출력 극대화
Fig. 1. Maximization of wind power based on and an advanced wind prediction
풍속 예측 방법은 물리적 방법과 통계적 방법이 있는데 일반적으로 예측 목적으로 단기예측을 하기는 통계적 방법이 많이 사용되어 왔다. 그러나 단순 시계열 모델을 활용한 방법에서는 다양한 변화를 반영하기 어렵기 때문에 최적화 기법과 지능화 기법을 이용하여 다양한 예측을 하고 있다.

그림 2. 상태 모델과 최적화에 기반한 풍속예측 알고리즘

Fig. 2. Wind speed prediction using a state model and optimization

그렇다면 국내에서는 최적의 전력량 계통 연계를 위한 연구와 풍속예측의 불확실성에 대한 평가는 진두한 설정이다. 따라서 그림 2와 같은 통계적 모델과 학습을 이용한 최적화 기법의 융합된 풍력예측 알고리즘 구조를 제안한다.

본 예측 알고리즘은 최적의 전력량 계통 연계를 고려하여 과거의 데이터의 현재 기상 정보를 이용하여 모델을 구현하고 순차적인 풍속 정보를 위하여 모델의 최적화를 수행한다. 또한 최적 모델을 통하여 상태 모델인 HMM(Hidden Markov Model)로부터 예측된 풍속 예측이 실제 온라인에서 정확도와 불확실성을 평가함으로써 풍력발전에 풍속예측의 반영 비율을 고려함으로써 전력망에 영향을 최소화하는 풍속 예측 알고리즘으로 사용이 가능할 것이다.

3. 결론

상태 모델은 예측 불가한 풍속을 모델링하기 위하여 사용되고 있으며, 최적화 기법은 과거의 데이터로 부터 상태 모델을 조금 더 실제 풍속과 일치하는 모델을 유도한다. 구성된 모델을 통하여 예측된 풍속은 전체 전력망의 영향을 고려한 풍력발전 제어를 수행하는 데 적용할 수 있다.

참고문헌