Advanced Science and Technology Letters

The ASTL series is committed to the publication of proceedings of Advanced Science and Technology. Its objectives is to publish original research in various areas of Science and Technology. This will provide good chances for academic and industry professionals to discuss recent progress in areas of Science and Technology.

Research papers were strictly peer-reviewed by program committees to make sure that the papers accepted were high quality and relevant to the current and future issues and trends in Science and Technology.

The scope of ASTL includes the entire area of science and technology from the current and future trends. The Language of publication is English. The Authors have to sign the SERSC ASTL copyright transfer form.

Advanced Researches on Computer Science and Technology

Advanced Researches on Computer Science and Technology

Proceedings
International Conference, AST 2013
Yeosu, South Korea, April 2013

ISSN 2287-1233

ASTL

SERSC
Science and Engineering Research Support Society
Table of Contents

Tabu Search Based Topology Modification for Power Systems 1
Hwachang Song

The Aspects of the Locavore Movement in Korea -Focused on Pocheon, Gyeonggi Province- .. 5
Jin-Young Kim

Adaptive Beamforming with Per-Antenna Feedback for Cooperative MIMO Systems ... 11
Sungmoon Chung, Inwhee Joe

A Dynamic IP Paging Scheme using Speed and Direction of Mobile Node for Proxy Mobile IPv6 ... 15
Jeman Park, Inwhee Joe

An Efficient Routing Algorithm using Traffic Estimation Scheme in Wireless Mesh Networks .. 19
Younho Jung, HyungTae Kim, Cheol Hong Kim, Jinsul Kim, Jaehyung Park

Adoption Effect of Database System for Health Promotion Practice of Cardiac Patients ... 23
Seong-Ran Lee

System Development for Chemical Temperature Control in Semiconductor Manufacturing .. 27
Hyoung-Keun Park

Robot Velocity Based Path Planning Along Bezier Curve Path 31
Gil Jin Yang, Byoung Wook Choi

Development of the Agricultural Cooperatives for Revitalization of the Rural Community -Focusing on the Case Study of ‘Sunkist’- ... 35
Jin-Young Kim

Experimental Performance Evaluation of a Simple Indoor Positioning Scheme with Two Commonly Used Sensors .. 39
Kyungsub Yun, Youngjun Jo, Nammoon Kim, Uk Jo, Youngok Kim
Application of Port Logistics Information using E-government Standard Framework ... 44
Yong-Hae Han, Mok-Ryun Choi, Chang-Seung Ha, Doo-Jin Park, Sung-Chul Byun, Lee-Sang Jung

The Design of IC Driver for AMOLED Display .. 49
Seung-Woo Lee, Sun-Yeob

Legal Consideration on the Permitted Limits of Telemedicine and Its Responsibility: Focused on the Article 34 in Medical Act 53
Ki-Min Song, Ho-Young Choi, Seung-II Moon

Sequential Parameter Estimation Scheme for a PWM Inverter-fed IPMSM Control ... 57
Kyeong-Hwa Kim

Neuro-Adaptive Control of Nonlinear Dynamic System Using RBFN 61
Hyun-Seob Cho

Design of Scatter Partition-based Fuzzy Neural Networks for Nonlinear Process ... 65
Dong-Yoon Lee, Keon-Jun Park

Analysis of Crustal Movement about Antarctica Using Distributed GPS Network .. 69
Joon-Kyu Park, Min-Gyu Kim, Jong-Sin Lee

The Necessity and Issues of Panel Survey in Leisure Studies 73
Young-Min, Song, Seung-II, Moon

Invigoration Plan for Southwest Coast Tourism and Leisure Cities: Focused on Liaison Strategies with Local Business ... 77
Seung-II, Moon

An Efficient Method for Nurse Scheduling Problem using Simulated Annealing .. 82
Young-Woong Ko, DongHoi Kim, Minyeong Jeong, Wooram Jeon, Saangyong Uhmh, Jin Kim

Maximizing IT Organization’s Adaptability through Outsourcing 86
Yoo-Jung Choi, Dong-Hwan Cho
Revisiting the Risks of Software Development Outsourcing Project

Haeng-Nam Sung, Dong-Hwan Cho

Innovation Confidence and Entrepreneurship: Looking into Demand-side of Innovations

Jin-Hyuk Hong, Dong-Hwan Cho

An Analysis Framework for Media Multitasking Performance Degradation

Ki-Sang Song, SangChun Nam, JaeKyung Kim, HyunGun Lim

Relationship among Creativity, Motivation and Creative Home Environment of Young Children

Kyoung-hoon Lew, Jungwon Cho

Specification of Cyber Physical Systems by Clock

Bingqing Xu, Jifeng He, Lichen Zhang

Modelica introduction and modeling with Vehicle Dynamics library

Shuguang Feng, Jifeng He and Lichen Zhang

Simulation for Dynamical Model of Educational Effectiveness though Gamification

JungTae Kim, Won-Hyung Lee

Development of Passenger Hi-pass and Automatic Counting System for Public Transportation

Jang won Seo, Daegyu Hwang, Kyunghee Lee, Ki seong Kim, Inho Jeon, Changqianglee, Youngok Kim

Analysis of Educational Applications of Smart Devices

Soo-Bum Shin, Jin-Hee Ku, Ja-Hee Lee

Contention Control for Multi-Packet Reception-Enabled Wireless Networks

Daewon Jung, Changsoo Lee

Design of Realizing Virtual Experience Contents

Hyun Hahm, Keun-Wang Lee

A Study on V.M.M (Visual Merchandising Design) Environment of Mobile Telecommunication Company Store

Jong Sung Kim
The Early Korean Soap Opera Drama: It’s Focus on Family members 142
Keun-Wang Lee, Hyun Hahn

Design of Loading Speed of Virtual Reality Software 145
Keun-Wang Lee, Myoung-Kwan Oh

Design and Implementation of Small Scale Electric Power Management System with Data Mining Method .. 148
Changsoo Lee, Daewon Jung, Keunwang Lee

Smartphone Application Development using HTML5-based Cross-Platform Framework.. 151
Si-Ho Cha, Yeomun Yun

Digitizing Analogue Instruments for Computer Music 154
Yoemun Yun, Si-Ho Cha
Robot Velocity Based Path Planning Along Bezier Curve Path

Gil Jin Yang, Byoung Wook Choi∗

Dept. of Electrical and Information Engineering
Seoul National University of Science and Technology, Seoul, South Korea
yang6495@gmail.com, bwchoi@seoultech.ac.kr

Abstract. This paper presents a path planning method considering physical limits for two-wheeled mobile robots (TMRs). A convolution operator is used to generate the center velocity trajectory to travel the distance along predefined Bezier curve while considering the physical limits. The trajectory gained through convolution does not consider the rotating angle of TMR, so we present a transformational method for the center velocity trajectory along the planned path as a function of time for the parameter of the Bezier curve.

Keywords: TMR, Bezier curve, Convolution, Physical Limits

1 Introduction

TMRs are recently widely used as cleaning robots and intelligent service robots; thus, extensive research is underway on trajectory planning to minimize energy and optimize traveling time as well as to resolve issues regarding smooth traveling toward the desired destinations in workspaces [1-3].

If the physical limits of TMR during path planning and trajectory generation are considered, potential damage to TMR can be reduced, and trajectory tracking accuracy can be improved [3]. To this end, trajectory planning methods of center velocity of TMR using a convolution operator have been suggested that consider physical limits of TMR in workspaces [2, 4]. However, the method does not consider a heading angle—part of TMR’s kinematics. Instead, they consider only the translational velocity and paths as opposed to the center of TMR in Cartesian coordinates. In a path planning for TMR, a smooth path planning method that considers the initial and final heading angles is a basic goal.

When generating a trajectory of TMR, path planning methods have been studied for TMR arriving in a desired posture at a final destination based on a starting position and heading angle using a Bezier curve [5].

In this study, we first generate a path based on a Bezier curve in order to build smooth path while considering heading angle. A convolution operator is used to generate the velocity for the robot center to travel the planned path. In this process, the velocity trajectory can be generated while considering the maximum velocity and

∗ Corresponding author

AST 2013, ASTL Vol. 20, pp. 31 - 34, 2013
© SERSC 2013
acceleration. The velocity trajectory gained through convolution is a trajectory along the path which a robot travels given distance that does not consider the rotating angle of TMR. In order to consider a rotating angle of TMR, a transformational method is presented that consists of segmented paths along designed Bezier curve with the central velocity generated through convolution. Finally, the trajectory obtained through transformational process can be used for TMR to smoothly follow the planned path while staying within the physical limits. In the convolution and transformation process, the sampling should be conducted. Tracking errors between the parametric Bezier curve and the trajectory generated through transformation process are analyzed according to the sampling time.

2 Bezier Curve based Path Planning

A curved trajectory is commonly generated using Bezier curve [5]. As shown in Fig. 1, a trajectory is generated using a Bezier curve consisting of \(P_i(A_0, B_0), P_f(A_3, B_3) \), and control points \(C_1(A_1, B_1) \) and \(C_2(A_2, B_2) \). An equation for the Bezier curve is calculated using \(C_1 \) and \(C_2 \) and it is given below in equation (1).

\[
\begin{align*}
x(u) &= A_0(1-u)^3 + 3A_1u(1-u)^2 + 3A_2u^2(1-u) + A_3u^3, \\
y(u) &= B_0(1-u)^3 + 3B_1u(1-u)^2 + 3B_2u^2(1-u) + B_3u^3,
\end{align*}
\]

In equation (1), \(u \) is an arbitrary parametric value in \(0 \leq u \leq 1 \) and can be used to generate a smooth curve from a starting point to a target point: a more precise Bezier curve with a smaller increase. The path given by equation (1) does not consider velocity and it is only parameterized by \(u \).

3 Convolution based Trajectory Planning Following Bezier Curve

There have been research results that the path generation method may use convolution operator to create a central velocity trajectory of TMR for smooth path generation while satisfying physical limits [2,3].
Let a Bezier-curve-based path as shown in Fig. 1 that considers the rotating angle using a constant value u be as $\rho(u)$. The traveling distance is calculated as in equation (2). The moving distance is used to generate the central velocity trajectory for the robot in convolution [2,3]. The curved distance B_d along the path $\rho(u)$ from P_i to P_f as in Fig. 1, is calculated as follows:

$$B_d = \sum_{u=0}^{1} \Delta \rho(u).$$

(2)

The calculated B_d is an actual moving distance along the path designed with Bezier curve which has smooth curve. To generate the center velocity trajectory of TMR using convolution, the moving distance S is thus used as an input value. If the center velocity trajectory, $v_c(t)$ is generated to have the traveling distance as $S = B_d$, the trajectory using the advantages of convolution while considering velocity limits. Here, v_0, v_f, v_{max} and the sampling time can be arbitrarily set according to the specifications of TMR [2, 3].

However, the generated velocity trajectory of $v_c(t)$ becomes the central velocity trajectory of TMR to travel the moving distance S while not considering the directions. In other words, assume that for any position, $(x(u_i), y(u_i))$, the robot travels at the velocity of $v_c(t_i)$ in Fig. 1, the subsequent position can be moved to an entirely different position depending on the rotating angle θ_i. In order to consider positions in task space that depend on velocities in paths with rotating angles, the parameter $u(t)$ of Bezier curve for the distance during the sampling time should be determined and is calculated as shown in equation (3). The trajectory $\rho(u(t))$ with the rotating angle can be obtained by inputting the determined $u(t)$ in equation (1). In $\rho(u(t))$, as the sampling time is shorter, the path can more accurately follow $\rho(u)$ generated by constant parameter value u.

$$u(t) = \frac{\sum_{t=0}^{t_1+t_2} v_c(t)}{B_d},$$

(3)

where, t_1, t_2 are travelling time according to first and second convolutions, respectively, and $u(t)$ represents the parameter of Bezier curve depending on the central velocity with $0 \leq u(t) \leq 1$.

Robot Velocity Based Path Planning Along Bezier Curve Path
The trajectory generated by using \(u(t) \) satisfies the maximum velocity allowed by the physical limits of TMR while following the curved path with heading angles. Fig. 2(a) shows the trajectories based on central velocity according to the sampling times, which satisfied the physical limits along the Bezier curve path. In this figure, the distance between positions of the trajectory is the travelling distance driven by the central velocity function in a sampling time. The results showed that the generated trajectory was depending on the central velocity function’s trajectory. Fig. 2(b) represents the tracking error between the Bezier curve and the trajectory generated according to sampling time of 1ms, 50ms, 10ms. The error becomes larger as high angular velocity and long sampling time.

4 Conclusions

A velocity trajectory generation method that enables a TMR to travel smoothly along curved path while staying within the actuator’s physical limits was proposed. The path planning method proposed in this paper can be utilized for a path planning with optimized travelling time and an energy-efficient path planning that considers the limited battery power of a running robot.

We examined tracking errors according to the sampling time when convolution and transformation process. For smooth control, the effect of sampling time should be considered.

Acknowledgments. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2012-006057)

References